10th Class Mathematics Test Unit 4 - Partial Fractions

Unit 4 – Partial Fractions
Quiz
- 1. What is the purpose of partial fraction decomposition?
- To simplify complex numbers
- To split a rational expression into simpler fractions
- To factorize polynomials
- To solve quadratic equations
- 2. A proper rational function is defined as:
- Degree of numerator is less than the degree of denominator
- Degree of numerator is greater than the degree of denominator
- Degree of numerator is equal to the degree of denominator
- None of the above
- 3. If the degree of the numerator is greater than or equal to the degree of the denominator, the first step is to:
- Factorize the denominator
- Divide the numerator by the denominator
- Apply partial fraction directly
- Multiply by a constant
- 4. For the partial fraction decomposition of P(x)Q(x)\frac{P(x)}{Q(x)}Q(x)P(x), Q(x)Q(x)Q(x) must be:
- ) A polynomial of lower degree than P(x)P(x)P(x)
- A polynomial of higher degree than P(x)P(x)P(x)
- A factorizable polynomial
- A constant
- 5. If Q(x)Q(x)Q(x) contains non-repeated linear factors, the partial fraction decomposition takes the form:
- A(x−a)+B(x−b)\frac{A}{(x-a)} + \frac{B}{(x-b)}(x−a)A+(x−b)B
- A(x−a)2+B(x−a)\frac{A}{(x-a)^2} + \frac{B}{(x-a)}(x−a)2A+(x−a)B
- Ax+B(x2−a)\frac{Ax+B}{(x^2-a)}(x2−a)Ax+B
- None of the above
- 6. For repeated linear factors, such as (x−a)2(x-a)^2(x−a)2, the partial fraction decomposition is:
- Ax−a+B(x−a)2\frac{A}{x-a} + \frac{B}{(x-a)^2}x−aA+(x−a)2B
- Ax−a+Bx+a\frac{A}{x-a} + \frac{B}{x+a}x−aA+x+aB
- Ax+B(x−a)2\frac{Ax+B}{(x-a)^2}(x−a)2Ax+B
- None of the above
- 7. If Q(x)Q(x)Q(x) contains an irreducible quadratic factor, the partial fraction decomposition involves:
- A constant numerator
- A linear numerator
- A quadratic numerator
- A cubic numerator
- 8. In the decomposition of 1(x−1)(x−2)\frac{1}{(x-1)(x-2)}(x−1)(x−2)1, the partial fractions are:
- 1x−1+1x−2\frac{1}{x-1} + \frac{1}{x-2}x−11+x−21
- Ax−1+Bx−2\frac{A}{x-1} + \frac{B}{x-2}x−1A+x−2B
- A(x−1)2+B(x−2)2\frac{A}{(x-1)^2} + \frac{B}{(x-2)^2}(x−1)2A+(x−2)2B
- None of the above
- 9. For the decomposition of 1(x−1)2\frac{1}{(x-1)^2}(x−1)21, the partial fractions are:
- Ax−1+B(x−1)2\frac{A}{x-1} + \frac{B}{(x-1)^2}x−1A+(x−1)2B
- Ax−1\frac{A}{x-1}x−1A
- B(x−1)2\frac{B}{(x-1)^2}(x−1)2B
- Ax−1−B(x−1)2\frac{A}{x-1} - \frac{B}{(x-1)^2}x−1A−(x−1)2B
- 10. The partial fraction decomposition of 5x+7(x−1)(x+2)\frac{5x+7}{(x-1)(x+2)}(x−1)(x+2)5x+7 takes the form:
- Ax−1+Bx+2\frac{A}{x-1} + \frac{B}{x+2}x−1A+x+2B
- Ax+2+Bx−1\frac{A}{x+2} + \frac{B}{x-1}x+2A+x−1B
- Ax+Bx−1\frac{Ax+B}{x-1}x−1Ax+B
- None of the above
Post a Comment
0 Comments